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Abstract— Most existing point cloud instance and semantic
segmentation methods rely heavily on strong supervision signals,
which require point-level labels for every point in the scene.
However, such strong supervision suffers from large annotation
costs, arousing the need to study efficient annotating. In this
paper, we discover that the locations of instances matter for
both instance and semantic 3D scene segmentation. By fully
taking advantage of locations, we design a weakly-supervised
point cloud segmentation method that only requires clicking on
one point per instance to indicate its location for annotation. With
over-segmentation for pre-processing, we extend these location
annotations into segments as seg-level labels. We further design
a segment grouping network (SegGroup) to generate point-level
pseudo labels under seg-level labels by hierarchically grouping
the unlabeled segments into the relevant nearby labeled segments,
so that existing point-level supervised segmentation models can
directly consume these pseudo labels for training. Experimental
results show that our seg-level supervised method (SegGroup)
achieves comparable results with the fully annotated point-level
supervised methods. Moreover, it outperforms the recent weakly-
supervised methods given a fixed annotation budget. Code is
available at https://github.com/antao97/SegGroup.

Index Terms— Point cloud segmentation, seg-level supervision,
weakly-supervised learning, graph neural network.

I. INTRODUCTION

RECENT years have witnessed significant progress on
analyzing different 3D geometric data structures, includ-

ing point cloud [1], [2], mesh [3], [4], voxel grid [5], [6],
multi-view [7], [8] and implicit function [9]–[11]. Due to
the popularity of varying scanning devices, 3D point cloud
data is easy to obtain and thus arouses increasingly attention.
Recently, many deep learning methods have been proposed to
directly operate on point clouds and have achieved encourag-
ing performance [1], [2], [12]–[15].
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Point cloud instance and semantic segmentation are two
fundamental but challenging tasks in 3D scene understanding.
Given a point cloud, instance segmentation aims to find all
existing objects and mark each object with a unique instance
label and a semantic class, while semantic segmentation only
predicts semantic classes. Over the past few years, strong
point-level supervisions that annotate every point in the scene
have derived rapid performance improvement on point cloud
instance and semantic segmentation tasks [16]–[21]. How-
ever, as each scene may contain a large number of points,
it is highly time-consuming to annotate all the points. For
example, ScanNet [22] is a widely used large-scale real-world
indoor dataset. It contains 1,613 scenes and each scene has
150,000 points on average. Even though ScanNet adopts over-
segmentation to reduce the annotation workload, it still needs
around 22.3 minutes to annotate all the segments in one scene.
With a growing number of unlabeled 3D point cloud data
in real-world applications, a natural question is raised: is it
necessary to label all points in a point cloud scene?

To alleviate the need for detailed point-level annotations,
we focus on weak supervision in point cloud instance and
semantic segmentation, which is far easier to obtain. Few
prior works study weak supervision in point cloud segmenta-
tion [23]–[25], where scene-level label, subcloud-level label,
and point annotation are three recent weak label forms. Scene-
level labels [23] indicate the semantic classes appearing in a
point cloud scene, while subcloud-level labels [23] indicate
the semantic classes appearing in a spherical subcloud sam-
pled from a point cloud. Point annotations [24]–[27] are a
set of labeled points sampled from a point cloud randomly
or by a specially designed algorithm. Although these weak
label forms reduce annotation effort significantly, they cannot
provide any instance-specific information, which makes them
not suitable for point cloud instance segmentation. A recent
weakly-supervised point cloud semantic segmentation method
OTOC [28] uses point annotations per instance, but it cannot
be directly applied to the instance segmentation task.

In this paper, we discover that the locations of instances
matter for both instance and semantic 3D scene segmen-
tation. Compared with the 2D images which lack depth
dimension, locations of instances can be more precisely in 3D
scenes. To fully take advantage of locations, we only need
to click on one point per instance to indicate its location
for segmentation, rather than labeling every point in the
scene. With these locations, we design a weakly-supervised
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Fig. 1. Illustration of annotation process to give instance locations. (a) Given
a scene, we first perform over-segmentation to get segments as the data pre-
processing step. (b) We click one point on the most representative segment
of each instance to give the location and annotate it with semantic classes
and instance IDs. (c) Then, we extend location annotations into segments to
obtain seg-level labels. (d) Compared with point-level labels which require
22.3 minutes per scene to annotate all points, seg-level labels only require
1.93 minutes per scene to give location information of each instance.

point cloud segmentation task to explore the importance of
locations.

Fig. 1 illustrates the annotation process to give instance
locations. Following the labeling strategy of point-level labels
in ScanNet [22], we first perform over-segmentation to obtain
segments as pre-processing. Unlike 2D images which usually
face occlusions and lightning variances, 3D data structures are
suitable for over-segmentation for their apparent boundaries
between different simple geometry parts. Then, we click one
point on the most representative1 segment of each instance to
give location annotations and extend them into corresponding
segments as seg-level labels. Finally, the seg-level labels are
adopted as supervision signals for point cloud segmentation.
According to our manual annotations, seg-level labels only
require 1.93 minutes per scene to click 0.028% points com-
pared with the strong point-level labels. However, due to the
over-segmentation, these annotated segments contain 29.42%
points of the whole scene.

To learn point cloud instance and semantic segmentation
under seg-level supervision, we design a two-stage approach.
We first propose a segment grouping network (SegGroup)
to generate point-level pseudo labels from seg-level labels
for the remaining unannotated points on the training set.
Then, we adopt an existing point-level supervised point cloud
segmentation model for standard training. The two stages
are trained separately, and the evaluation of the segmentation
performance is conducted on the existing point-level super-
vised model. In the SegGroup network, we propagate label
information by grouping unlabeled segments into the relevant
nearby labeled segments and conduct the grouping operation
hierarchically. After all grouping operations, all points in the

1In this work, we consider the largest segment of the instance as the most
representative segment to indicate the instance location.

point cloud scene are assigned with labels that are considered
as point-level pseudo labels.

Experimental results show that our seg-level supervised
method (SegGroup) achieves comparable results with the fully
annotated point-level supervised methods. It also outperforms
the recent weakly-supervised methods [23], [25] given a fixed
annotation budget. These results validate that annotating loca-
tion information is a low-cost but high-yield labeling manner
for 3D scene segmentation.

Our key contributions are summarized as follows:
1) We discover that the locations of instances matter for 3D

scene segmentation. To fully take advantage of locations,
we design a weakly-supervised point cloud segmentation
method that only requires clicking on one point per
instance to indicate its location for annotation.

2) We design a segment grouping network (SegGroup) to
generate pseudo labels for the remaining unannotated
points. Specifically, the network propagates label infor-
mation by grouping unlabeled segments into the relevant
nearby labeled segments hierarchically. Then, the pseudo
labels are used for standard fully supervised training.

3) Experimental results show that our seg-level supervised
method (SegGroup) achieves comparable results with the
fully annotated point-level supervised methods. More-
over, it also outperforms the recent weakly-supervised
methods given a fixed annotation budget.

II. RELATED WORK

In this section, we briefly review two related topics:
1) point cloud segmentation, and 2) weakly-supervised image
segmentation.

A. Point Cloud Segmentation

Approaches on point cloud semantic segmentation can
be mainly classified into two categories: voxel-based [21],
[29] and point-based [1], [2], [13], [14], [30]–[32]. Voxel-
based approaches voxelized point clouds into 3D grids
in order to apply powerful 3D CNNs, while point-based
approaches directly design models on point clouds to learn
per-point local features. Recent methods on point-based
scheme include neighbouring feature pooling [33], [34],
graph message passing [35], attention-based aggregation [36],
[37], and kernel-based convolution [12], [14]. For point
cloud instance segmentation, there are two common strate-
gies to find instances in 3D scenes: detection-based [17],
[18] and segmentation-based [16], [20], [38]. Detection-based
approaches first extract 3D bounding boxes using object detec-
tion techniques, and then find the object mask inside each
box. By contrast, segmentation-based approaches first predict
semantic labels for each point with a semantic segmentation
framework, and then group points into different objects.

While most existing methods heavily rely on strong point-
level labels, only a few works have studied weakly-supervised
point cloud semantic segmentation. Wei et al. [23] proposed
scene-level labels and subcloud-level labels to indicate the
semantic classes appearing in a point cloud scene and a spher-
ical subcloud sampled from a given point cloud, respectively.
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Hou et al. [25] proposed a 3D pre-training method that makes
use of both point-level correspondences and spatial contexts in
a scene with annotations of a given number of points per scene
by an active selection process with the pre-trained model.
Xu et al. [24], Hu et al. [26], and Zhang et al. [27] studied
point cloud segmentation under a fraction of randomly labeled
points. Although these weak label forms reduce annotation
effort significantly, they cannot provide any instance-specific
location information, which is a very important supervision
signal in the 3D scene. In contrast, our seg-level labels
are annotated per instance and are easy to be adopted by
annotators when they face the need for labeling. Liu et al. [28]
proposed a weakly-supervised point cloud semantic segmenta-
tion method OTOC by annotating one point per instance in the
point cloud scene. In contrast, our method can be generally
applied to semantic and instance segmentation tasks.

B. Weakly-Supervised Image Segmentation

Many works have been proposed for weakly-supervised
image segmentation, where image-level supervision [39]–[43]
and bounding box supervision [44]–[46] are two major lines in
both instance and semantic segmentation. Image-level labels
indicate the semantic classes appearing in an image, while
bounding boxes further frame every instance with semantic
classes. Weakly-supervised methods usually adopt a two-step
process that first generates pseudo labels and then trains
a supervised model treating these pseudo labels as ground
truth. For image-level supervised segmentation, a common
strategy is to train a classification model to recover class
activation maps [47], [48]. The predicted class activation maps
are then used as ’seeds’ for optimization methods that grow
the coarse activation maps to larger pseudo segmentation
maps. Some approaches additionally employ a class-agnostic
saliency estimation model [49] to capture the objectness of
pixels. In contrast, bounding boxes frame every object with
semantic labels, alleviating the need to estimate class acti-
vation maps. Segmentation masks can further be refined by
heuristic cues [46], [50] or mean-field inference [40], [51].
The refined masks are then adopted for segmentation model
training. Some works additionally use EM [40], [44], [46] for
iterative refinement of the ground truth and model parameters.
There are also some other weak supervision forms [52]–[54].
For example, Bearman et al. [52] proposed point labels to
annotate each object. Lin et al. [53] proposed scribble labels
by dragging the cursor in the center of the objects.

III. PROPOSED APPROACH

In this section, we first describe the seg-level annotations
for point cloud segmentation. Then, we detail our SegGroup
network to generate point-level pseudo labels from the anno-
tated seg-level labels on the training set. Finally, we introduce
the network training and implementation details.

A. Seg-Level Annotation

Following the labeling strategy of point-level labels in Scan-
Net [22], we follow the over-segmentation results provided by

the dataset, which is obtained by employing a normal-based
graph cut method [55], [56] on the mesh. The scenes on the
ScanNet dataset are provided as meshes. Each scene in the
ScanNet dataset is reconstructed from an RGBD video stream
that records every side of a room, and the mesh structure is
universal in the reconstructed scenes of other indoor datasets.
The vertices in the mesh are used as the input point cloud
of our SegGroup network. The results of over-segmentation
remain unchanged in all the subsequent operations, includ-
ing the manual annotation process and SegGroup network
learning.

Unlike 2D images that may suffer from occlusions and
lightning variances, 3D data structures usually have clear
boundaries between different simple geometry parts thereby
easier to perform over-segmentation. As segments are very
small in this process, in most cases, each segment only
contains one single object. We observe that for very few
cases one segment may overlap different objects. Because
the ground-truth strong labels of the ScanNet dataset are
also annotated based on over-segmentation to accelerate the
annotation process. Therefore, it is an intrinsic issue of this
dataset that may have the minority of incorrect ground-truth
labels, both in training and evaluation.

Before manual labeling started, we first generated various
types of weak labels from ground-truth strong labels and
conducted experiments to compare their performance in our
manuscript in Table VIII. We find the performance mainly
relies on the labeled segment sizes, i.e., the larger the better.
According to our observation, the largest segment of each
instance is usually the most central one, so we consider it can
represent the location of the instance. During the annotation
process, we ask the annotators to click on the point on the
largest segment of the instance to show the location and
consider the largest segment of an instance as the most
representative segment. If it is hard to distinguish the largest
segment (e.g. the sizes of some large segments for an instance
are almost equal), we allow the annotators to click the point on
the most central segment. With the help of over-segmentation,
these location annotations are automatically extended into
segments as seg-level labels.

To annotate seg-level labels, we design a WebGL annota-
tion tool in the browser. Fig. 2 shows the interface of our
annotation tool, which includes a scene display window on
the left and a control panel on the right. The annotator can
rotate and pan the scene to browse and annotate seg-level
labels by mouse clicking. Different from point-level labels
that annotate every point in the scene, we click on one point
per instance to indicate its location and give its semantic
class.

There are two modes to annotate the seg-level labels:
1) Annotating From Scratch: The annotation interface

requires the annotator to label both the semantic class and
the instance ID of the location of an instance (depicted in
Fig. 2(a)). In this annotation interface, the scene is displayed
with original scanned colors at the beginning. The annotator
needs to choose a semantic class before annotating the location
of each instance. In Fig. 2(a), the annotator is preparing to
annotate the pillow.
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Fig. 2. The interfaces of our WebGL annotation tool. (a) We design an annotation interface that requires the annotator to label both the semantic class and
the instance ID of each chosen segment. (b) Because scenes in ScanNet have ground-truth point-level labels, in this paper we choose to annotate our seg-level
labels based on the ground-truth labels to reduce the annotation difficulty. (c) After annotation, the interface displays the annotation results including location
annotations and seg-level labels.

Fig. 3. The Structure of our SegGroup network. The inputs of the SegGroup network consist of a segment graph and the corresponding point cloud segments.
Each node in the graph is attached with a feature vector, which describes the corresponding point cloud segment. Label information is extended from segments
into nodes where the red color indicates labeled nodes. Edges in the graph denote the connected segments that are adjacent in the scene and the lengths of
edges represent the similarity of segments. We design three grouping layers followed by a clustering step to group segments into instances by clustering nodes
in the graph hierarchically. The classifier in the last part of the framework is used for network training.

2) Annotating With GT Labels: Because scenes in ScanNet
[22] dataset have ground-truth point-level labels, in this
paper we choose to annotate our seg-level labels based on
the ground-truth labels to reduce the annotation difficulty
(depicted in Fig. 2(b)). Compared with annotating from scratch
in Fig. 2(a), in this annotation mode the annotator does not
need to annotate the semantic class of each instance location.

After annotation, the WebGL annotation tool provides
an interface to display the annotation results (depicted in
Fig. 2(c)). The annotation results include location annotations
and seg-level labels. In the display window, the positions
of red balls indicate the location annotations of instances.
For seg-level labels, different colors indicate they belong to
different instances. The white areas of the scene are unla-
beled. More details of the annotation tool can be accessed in
https://github.com/antao97/SegGroup.annotator.

We calculate the average annotation time per scene based
on our empirical timing results. In our work, because we only
annotate the segment locations for each instance, the aver-
age instance annotation time (68s) is obtained by averaging
the total annotation time for all 1,201 scenes. Our WebGL
annotation tools can calculate the average annotation time per

scene in real-time during the annotation process, as depicted in
Figure 2(c). To simulate the standard annotation process from
scratch in Fig. 2(a), we need to add the semantic annotation
time. The average time to annotate a semantic class (1.5s)
is obtained by testing the annotation time empirically on
10 scenes. Because the average instance number of each scene
is 32, we can finally derive our total annotation time for a scene
by 68 + 32 × 1.5 = 116s (1.93 minutes).

B. SegGroup
To learn point cloud segmentation models with seg-level

labels on the training set, we propose a two-stage approach.
We first design a segment grouping network (SegGroup) to
generate pseudo labels for the remaining unlabeled points
on the training set. Then, we adopt an existing point-level
supervised point cloud segmentation model (such as Point-
Group [20]) to consume the generated point-level pseudo
labels for standard training and evaluate its performance on
the testing set. The two stages are trained separately.

The structure of our SegGroup network is shown in Fig. 3.
To fully utilize the locations of instances in 3D scene to
generate pseudo labels, we assume that all segments of a single
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Fig. 4. The Structure of the semantic grouping layer. The inputs consist of a segment graph in layer l as well as the corresponding point cloud segments.
Same as the settings in Fig. 3, each node in the graph represents a unique point cloud segment. The node features are first concatenated with segment features
from point cloud segments by a feature extractor, and then updated by a graph convolution network. Finally, a node clustering algorithm groups similar nodes
into new nodes. With the clustering result, similar segments are merged into large segments.

instance are interconnected so that segments can be gathered
into instances according to their neighbor relationship under
the guidance of instance locations. With the mesh structure
of the scene data, we consider two segments to be neighbors
if there exists an edge connecting two vertices belonging to
two segments. Therefore, given an over-segmented point cloud
scene, we build a segment graph where each node denotes a
unique segment and the edge shows the adjacency between
two neighboring segments in the scene. We extend the label
information of each segment to the corresponding node in the
graph, where the red color indicates labeled nodes. As the
labeled nodes show the locations of instances, unlabeled nodes
of the same instance are gradually grouped into labeled nodes
through edges in the graph with our SegGroup network. The
final outputs of the SegGroup are one node for each instance
and all nodes are labeled with semantic classes and different
instance IDs. When the nodes are merged, the segments are
also merged into larger segments until all unlabeled segments
are merged into nearby labeled segments. All points in the 3D
scene are therefore labeled with semantic classes and instance
IDs, and we take these labels as point-level pseudo labels. The
additional classifier in the last part of the framework is used
for network training.

We design three grouping layers followed by a final clus-
tering process to group segments into instances by clustering
nodes in the graph hierarchically. The first layer is a structural
grouping layer, whose objective is to group similarly structured
segments into one segment to reduce the computational costs
of the subsequent grouping layers. The second and the third
layer are semantic grouping layers. Because the semantic and
structural grouping layers are almost the same except that the
semantic grouping layer has an additional graph convolution
network, we only introduce the semantic grouping layer in the
following content.

The structure of the semantic grouping layer is shown in
Fig. 4. The inputs of the l-th layer consist of a segment graph
with Ml nodes as well as its corresponding Ml point cloud
segments. Each node is represented by a Cl dimensional vector
which is considered as the node feature. The output of the

grouping layer is a new graph with Ml+1 nodes as well as
its corresponding Ml+1 point cloud segments, where Ml+1 ≤
Ml . The node features of the output new graph are in Cl+1

dimensional.
In the following content, we introduce the specific blocks

of the semantic grouping layer.
1) Feature Extractor: We adopt a shared EdgeConv [13]

network to obtain Cl
mlp dimensional segment features for each

input point cloud segment of the grouping layer individually,
which serves as a local feature learning module to extract
semantic information. During the forward-propagation process
of the SegGroup network, segments are gradually merged,
so that the receptive field of the feature extractor in the deeper
grouping layer also becomes larger to extract more macro-
scopic information. The input Cl dimensional node features
are concatenated with their corresponding newly extracted
Cl

mlp dimensional segment features to form new node features
in Cl + Cl

mlp dimension.
2) Graph Convolution: We update the node features with a

graph convolution network (GCN) [57]. Through the neighbor
relationship of nodes in the graph, the goal of GCN is
to semantically narrow down the difference between nodes
belonging to the same instance and extend the difference
between nodes belonging to different instances. Given a node
feature �hl

i and its adjacent neighbor node feature �hl
j in the

l-th grouping layer, the similarity coefficient el
i j is computed

according to the distance between �hl
i and �hl

j as

el
i j = exp(−λ‖�hl

i − �hl
j‖2), (1)

where λ is a positive parameter to control the slope. A small
distance indicates similar node features, which leads to a large
coefficient. If i = j , the coefficient el

ii = 1. To make coeffi-
cients easily comparable across different nodes, we normalize
them across all choices of j as

al
i j = el

i j

el
ii + ∑

k∈N l
i

el
ik

, (2)
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Algorithm 1 Clustering in Layer l

where N l
i is the neighborhood of node i in the graph. The

normalized similarity coefficients are used to compute a linear
combination of adjacent segment features. After a shared linear
transformation parametrized by a weight matrix Wl and a

nonlinearity σ , the output node feature �hl′
i is finally computed

as

�hl′
i = σ

⎛
⎜⎝al

ii W
l �hl

i +
∑

k∈N l
i

al
ikWl �hl

k

⎞
⎟⎠ . (3)

In grouping layer l, the dimension of �hl
i is Cl + Cl

mlp , and the

dimension of �hl′
i is Cl+1.

3) Clustering: We further design a straightforward but
effective node clustering algorithm to group similar neighbor-
ing nodes into one node. Given a grouping layer l, for all
neighboring pairwise nodes, if they do not belong to different

Algorithm 2 Final Clustering

instances and the distance between node features is below a
given threshold el

τ , we merge the two nodes into a new node.
Finally, the algorithm produces Ml+1 nodes from Ml nodes
in grouping layer l. The node features of the new nodes are
obtained by a max-pooling operation on their merged node
features.

Algorithm 1 shows the detailed procedure to produce Ml+1

nodes from Ml nodes in grouping layer l. Given a graph that
has Ml nodes, we first initialize each node with a separate
cluster and also assign the label information (labeled or
unlabeled) to the clusters. Then, we gradually merge clusters
according to conditions. More specifically, for each edge in
the graph, we first check whether the connected two nodes
are in the same cluster or their corresponding clusters are
both labeled. If neither of the two conditions is true, the
two clusters do not belong to different instances and then we
check whether the distance between the two node features
is smaller than a threshold el

τ . If the distance condition is
met, we merge the two clusters and update label information.
After finishing the edge traversal, we obtain Ml+1 clusters and
Ml+1 corresponding labels. Then, we convert these clusters
into new nodes and extend the label information to them.
The node feature of each new node is obtained by a max-
pooling operation on old node features of all nodes in each
cluster. Before the max-pooling operation, the node features
and node-wise distances are unchanged during the clustering
process. Finally, we remove the edges inside each cluster to
obtain a new graph. The node features are uniformly updated
at the end of the process.

The label propagation process of our method considers the
instance IDs of labeled segments by restraining the merg-
ing of two clusters with different instance IDs (lines 8-9
in Algorithm 1). There may exist issues in the boundaries
between two neighbor instances of the same semantic class,
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but we find this circumstance is very rare in 3D scenes.
If this circumstance happens, the boundaries between the two
instances are usually very clear. The segments of different
instances near the boundaries cannot be easily merged due
to geometry differences.

After the three grouping layers in Fig. 3, most of the nodes
are merged. For the few remaining unlabeled nodes, we further
perform the below node clustering algorithm to group all
unlabeled nodes into nearby relevant nodes to generate final
instance proposals.

4) Final Clustering: Different from the node clustering
algorithm in the three grouping layers, this node clustering
algorithm traverses all unlabeled nodes. This algorithm adopts
a greedy strategy that obtains a locally optimal solution by
merging each unlabeled node into the most similar neighbor
node in the graph by comparing distances between node
features. Finally, all the nodes in the graph are labeled and
each instance in the 3D scene corresponds to a unique node.
The point cloud segments become our propagated instance
proposals which are considered as point-level pseudo labels.

Algorithm 2 shows the detailed procedure to produce K
nodes from Ml nodes after all grouping layers, where K is
the number of instances in the 3D scene. For each unlabeled
node, this algorithm merges it into the most similar neighbor
node in the graph by comparing distances between node
features. At each step when two nodes are merged, the label
information is updated and the new node feature is computed
by a max-pooling operation on the two old node features. The
corresponding edge is also removed to form a new graph.
In the point cloud scene, the two corresponding segments are
also merged into one. The clustering process continues until
no unlabeled nodes exist.

Although Algorithm 2 depends on the order of the nodes,
according to our design most of the nodes are meaningfully
clustered by Algorithm 1 before the final node clustering
process. The goal of the final node clustering in Algorithm 2
acts as a cleaning-up role to quickly combine the few remain-
ing unlabeled nodes into nearby related nodes. The order of
the nodes only has a minor effect in Algorithm 2. To validate
the stability of our method, we randomly shuffle the order
of nodes 3 times and find the floating range of the mIoU of
generated pseudo labels is within 0.5% in semantic mIoU.

After the final clustering process, we can obtain point-level
pseudo labels of an input scene. The nodes of the final graph
in Fig. 4 have different instance IDs. In the next section,
we show how to train the SegGroup network in order to get
better pseudo labels.

C. Network Training

The SegGroup network outputs a graph containing K nodes,
each of which is attached with a label and a node feature.
Because these K nodes correspond to K different instances,
we extend the label information into instances and consider
the node features as instance features. To train the SegGroup
network, we adopt a classifier network to obtain a score of
labeled semantic class for each instance. A cross-entropy loss
is further computed for backward-propagation. In essence, our
network training scheme alternates between two steps.

TABLE I

THE DIMENSIONS OF THE FEATURES IN OUR ARCHITECTURE

1) Forward-propagation. With the network parameters
fixed, the SegGroup propagates labels to unlabeled
segments as pseudo labels by clustering. The output
instance features are further processed by the classifier
to obtain semantic scores.

2) Backward-propagation. With the pseudo labels fixed,
we use the cross-entropy loss computed by the semantic
scores to optimize the parameters of the SegGroup and
the classifier. As the network parameters are optimized,
the instance features which are gathered by the node
features in all grouping layers can capture more semantic
information.

Similar ideas of this EM-like algorithm are widely-used to
effectively refine the generated pseudo labels in weakly- and
semi-supervised learning, such as [40], [44], [53].

Although the clustering algorithm may make mistakes and
spread to the ambiguous parts with the hierarchical grouping
operations, the generated pseudo labels are relatively accurate
around the locations of instances that are indicated by seg-level
labels. During the training process, the feature extractor and
GCN can gradually learn semantically related features for each
instance according to the 3D structures around the instance
locations. As the features of nodes belonging to the same
instance contain more semantic information and become closer
in feature space, the clustering algorithm can gather them
more correctly with the help of the given instance location
and the SegGroup can output better pseudo labels. After such
a virtuous cycle in network training, we finally obtain the
well-trained pseudo labels and they are used in the strong
supervised instance and semantic point cloud segmentation.

D. Implementation Details

The input of our architecture includes a point cloud scene
with RGB colors and a segment graph. Each point in the
point cloud scene is 6-dim (XYZ and RGB). The initial node
feature C1 in the segment graph is vacant, so the dimension
is 0. The feature extractor in the first semantic layers extracts
64-dim features with one shared multi-layer perceptron (MLP)
layer (64), while the extractor in the second layer adopts two
shared MLP layers (64, 64) to obtain 64-dim features. After
the SegGroup network, the output node feature C4 is 256-dim.
Table I lists the details of the dimensions of the features in our
architecture. In all GCNs, we set the output feature dimension
the same as the input dimension and λ = 1/8. We set
the threshold el

τ for clustering as 6 and 2 for the structural
grouping layer and the semantic grouping layer, respectively.
We have tried many other thresholds (5 and 7 for the structural
grouping layer, 1 and 3 for the semantic grouping layer) and
found the floating range of the mIoU of generated pseudo
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TABLE II

THE CLASS-SPECIFIC SEMANTIC IOUS (%) OF THE GENERATED PSEUDO LABELS ON SCANNET TRAINING SET

labels is within 3% in semantic mIoU. This experimental result
shows that our network is not very sensitive to the thresholds.
The classifier obtains class scores with two fully-connected
layers. We apply dropout with a keep probability of 0.5 in the
classifier. All layers in the feature extractors and the classifier
include LeakyReLU and batch normalization. In the network
training, we use SGD [58] to optimize the SegGroup network
with the learning rate as 0.1 and momentum as 0.9. We train
the network for 6 epochs in a batch size of 8.

IV. EXPERIMENTS

In this section, we first evaluated the accuracy of the
generated pseudo labels compared with ground truth labels.
Then, we conducted experiments to show the performance
of point cloud instance and semantic segmentation with our
pseudo labels. Finally, we compared the annotation efficiency
of different label forms with a fixed labeling time.

We adopted the ScanNet [22] dataset to conduct our exper-
iment. ScanNet is a widely used large-scale real-world indoor
3D dataset, containing 1,201 training scenes, 312 validation
scenes, and 100 hidden test scenes. The dataset has 40 object
classes, and the evaluation of semantic segmentation is con-
ducted on 20 classes. For instance segmentation, the wall and
floor classes are ignored and only 18 classes are used for
evaluation. We annotated seg-level labels in all the 40 classes,
where we trained the SegGroup network on these labeled
classes. We report the results on 18 classes for instance
segmentation tasks and 20 classes for semantic segmentation
tasks.

A. Pseudo Label Evaluation

We first evaluated the generated pseudo labels by instance
and semantic IoUs. Table II shows the class-specific semantic
IoU results of the pseudo labels on the ScanNet training
set. The semantic IoUs are calculated per semantic class.
We also tested the pseudo labels generated in every layer of
the SegGroup network. The last row “SegGroup” indicates
the final output of the network. As the label information is
propagated from labeled segments into unlabeled segments
with the number of grouping layers increasing, more points
in the point cloud scene are annotated with the pseudo labels
until all points are annotated. Experiments show that the
generated pseudo labels are very close to the ground truth
labels by annotating one point per instance. From the results
on different classes, we observe that our method performs

significantly better on the classes of wall and floor which
have simple structures as well as chair, sofa, table, shower,
curtain and toilet that are easy to identify and separated from
a smooth surface. Table II also shows the evaluation results
of the pseudo labels generated from scene-level labels and
subcloud-level labels by MPRM [23], where our generated
pseudo labels outperform them by a large gap. The mean IoU
at Layer 1 of SegGroup is already higher than that of the scene-
level labels by MPRM. Considering our method also requires
less annotation time per scene compared with the subcloud-
level method, experimental results show that our method has
a better balance between the annotation time and the quality
of the generated pseudo labels.

Besides the quantitative results that compare our generated
pseudo labels with the ground truth, we also show qualita-
tive visualizations for a more intuitive illustration in Fig. 5.
On the ScanNet dataset, there are still a very small number of
points remaining unlabeled for point-level annotation, so we
can also observe some white details in Fig. 5(d). By only
annotating one point per instance for its location, we obtain
the labels for the corresponding segments with a number of
points. In contrast to point-level labels, our labeling method
is very cost-effective. With the benefit of seg-level labels, our
SegGroup network can generate qualitative point-level pseudo
labels from instance locations. From the visualization results,
we observe that the pseudo labels match the ground-truth
labels in almost all the areas.

B. Point Cloud Instance Segmentation

For the evaluation of the point cloud instance segmentation
task, we employed PointGroup [20] to train a point cloud
instance segmentation model based on the generated point-
level pseudo labels. Table III shows the recent point-level and
weakly-supervised point cloud instance segmentation results
on the ScanNet testing set. The Point Anno. entry denotes
the percentage of manually annotated point labels in the total
points of the point cloud scene. Because the numbers of
segment labels and point labels are the same in our method,
we consider a segment label as a point label when computing
the percentage of overall annotated data. AP averages the
scores with IoU (Intersection over Union) threshold set from
50% to 95% with a step size of 5%, while AP 25 and AP
50 denote the AP scores with IoU threshold set as 25%
and 50% respectively. We use CSC-20 and CSC-50 to denote
the Contrastive Scene Contexts (CSC) [25] method that is
annotated with 20 and 50 points per scene. We observe that our
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Fig. 5. The qualitative visualization results of pseudo label generation. In (b), (c) and (d), various colors indicate different (pseudo) instance labels and points
in white are unlabeled. With the benefit of seg-level labels, our SegGroup network can generate qualitative point-level pseudo labels from instance locations.

TABLE III

POINT CLOUD INSTANCE SEGMENTATION RESULTS (%) ON THE SCANNET

TESTING SET WITH DIFFERENT SUPERVISIONS

seg-level supervised method achieves competitive results with
the recent strong supervised methods. However, the seg-level

TABLE IV

POINT CLOUD INSTANCE SEGMENTATION RESULTS (%) ON THE SCANNET

VALIDATION SET WITH A FIXED LABELING TIME

BUDGET ON THE TRAINING SET

labels only require 1.93 minutes to click on 0.028% of points
for one scene in ScanNet on average, while the strong point-
level labels need 22.3 minutes. Compared with the CSC [25]
method which proposes an active labeling strategy (denoted as
init+act.) to annotate points, our annotations are per instance
and indicate the locations. In seg-level labels, we annotate
41.2 points on average for each 3D scene. The results show
that our seg-level labels obtain much better performance than
init+act. point annotations for the instance segmentation task.

Besides the experiments above, we also compared the effi-
ciency of different labeling strategies given a fixed annotation
time budget on the training set. Table IV shows point cloud
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TABLE V

POINT CLOUD SEMANTIC SEGMENTATION RESULTS (%) ON THE
SCANNET TESTING SET COMPARED WITH DIFFERENT SUPERVISIONS

instance segmentation results under different supervisions on
the ScanNet validation set with different numbers of training
scenes. Given the labeling time for the whole training set
(1201 scenes) with seg-level labels, only 104 scenes can be
annotated with point-level labels. The results show that our
seg-level labels obtain much better performance than point-
level labels given the same annotation budget for the instance
segmentation task.

C. Point Cloud Semantic Segmentation
For the point cloud semantic segmentation task, we trained

MinkowskiNet [21] and KPConv [14] with the generated
pseudo labels for evaluation. Table V shows the results of both
the recent point-level and other weak supervision methods2 on
the ScanNet testing set. Following the definitions in Table III,
we use OTOC-20 and OTOC-50 to denote the OTOC [28]
method that is annotated with 20 and 50 points per scene.
We use mIoU (mean Intersection over Union) as the evaluation
metric. The results show that we achieve comparable results
with the strong point-level supervised methods. Considering
the huge time cost of the point-level labels, our seg-level

2If an instance is composed of some disconnected portions, we allow
the annotator to label one segment on each of them. Therefore, the point
annotation rate of SegGroup is slightly higher than OTOC [28].

supervised method is very competitive. Moreover, we outper-
form most of the weakly-supervised methods in a comparable
point annotation rate. Considering the annotation time of the
subcloud-level labels in MPRM [23] is about 3 minutes per
scene, we also surpass MPRM on the semantic segmentation
performance with a less time budget of 1.93 minutes per scene.
Experimental results show that our seg-level labels provide
a nice tradeoff between annotation time and segmentation
accuracy, which shows that precise instance locations are
crucial for 3D scene understanding.

Although the performance of OTOC [28] on semantic
segmentation is better than ours, OTOC can not be directly
adopted for instance segmentation. This limitation is deter-
mined by its objective function (energy function) for pseudo
label generation, where both the unary term and the pairwise
term only consider semantic labels. The energy function
is built upon the point-level semantic prediction outputs of
the semantic segmentation model. The final semantic pseudo
labels are obtained by minimizing the energy function. We also
find that our method uses much fewer network parameters than
OTOC. When we remove the semantic segmentation model
and remain the backbone for pseudo label generation, the
parameter numbers are 30.11M v.s. 0.15M for OTOC and our
SegGroup.

We presented the semantic IoU per class results after
the classical learning process in Table VI. For the point-
level and seg-level supervised methods, we observe that the
rankings of class-specific IoUs from the highest to the lowest
are almost the same. This phenomenon shows that our seg-
level supervised method has similar behavior to the point-
level supervised method. When comparing Table VI with
Table II, the experimental results do not show explicit relation
between the rankings of the class-specific IoUs of pseudo
labels on the training set in Table II and the predicted labels
on the validation set in Table VI. We think the rankings
of class-specific semantic IoUs of both point-level and seg-
level supervised methods in Table VI are determined by the
difficulty of the classes themselves in the training process.

We also compared the efficiency of different labeling
strategies on point cloud semantic segmentation following
the settings in Sec. IV-B. Table VII shows the point cloud
semantic segmentation results under different supervisions on
the ScanNet validation set with a fixed annotation budget on
the training set. Given the labeling time for the whole training
set with seg-level labels, only 104 scenes can be annotated
with point-level labels. Our SegGroup outperforms the fully
supervised method under the same annotation cost. Combining
the results in both Table IV and Table VII, our seg-level
labels provide a better tradeoff between annotation time and
segmentation accuracy compared with point-level methods,
which shows that precise instance locations are crucial for
3D scene understanding. Annotating instance location as seg-
level labels can be a low-cost but high-yield labeling manner
for 3D instance and semantic segmentation.

D. Ablation Study
Before manual labeling started, we first generated vari-

ous types of weak labels from ground-truth strong labels
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TABLE VI

THE CLASS-SPECIFIC SEMANTIC IOUS (%) OF POINT CLOUD SEMANTIC SEGMENTATION RESULTS ON THE SCANNET
VALIDATION SET COMPARED WITH THE FULLY-SUPERVISED METHOD

TABLE VII

POINT CLOUD SEMANTIC SEGMENTATION RESULTS (%) ON THE

SCANNET VALIDATION SET WITH A FIXED LABELING TIME
BUDGET ON THE TRAINING SET

TABLE VIII

POINT CLOUD INSTANCE AND SEMANTIC SEGMENTATION RESULTS (%)
ON THE SCANNET VALIDATION SET SUPERVISED BY SEG-LEVEL

LABELS OBTAINED WITH DIFFERENT ANNOTATION MANNERS

and conducted experiments to compare their performance.
We employed PointGroup [20] and KPConv [14] to train a
point cloud instance segmentation model and a point cloud
semantic segmentation model based on the generated point-
level pseudo labels from our SegGroup. The Mechanical part
of Table VIII shows the point cloud instance and semantic
segmentation results under various annotation manners on
the ScanNet validation set. For mechanical seg-level labels
generated from Top-N segments, we choose to annotate one
point randomly in the range of Top-N largest segments for
each instance. The results show that larger segments can yield
better performance. We follow these experimental results to
design our manual annotation rule as annotating on the largest
segment of an instance as the most representative segment.

We also compared the annotation quality between manual
labeling by annotators and mechanical labeling from the
ground-truth point-level labels in Table VIII. Compared to
mechanical annotations, the results of manual annotations are
slightly worse but comparable. Therefore, our manual labeling
strategy for seg-level labels is practical for future applications.
Moreover, we find that for mechanical annotations the results

TABLE IX

POINT CLOUD INSTANCE AND SEMANTIC SEGMENTATION RESULTS (%)
ON THE SCANNET VALIDATION SET SUPERVISED BY SEG-LEVEL

LABELS OBTAINED WITH DIFFERENT ANNOTATION

NUMBERS PER INSTANCE

Fig. 6. Point cloud instance segmentation AP 50 results (%) of Point-
Group [20] network trained by SegGroup and CSC [25] with different point
annotation rates on the ScanNet validation set.

of Top-3 are better than Top-1 on semantic segmentation,
while worse on instance segmentation. Top-3 annotations can
increase variety in seg-level labels across instances, while
lower the labeling quality of each instance. The results show
that semantic segmentation supervision benefits more from
labeling variety across instances, while instance segmentation
is more sensitive to instance-specific labeling quality.

When the annotation number increases, we find that we
can achieve better performance in Table IX. We increased
the annotation number by allowing more than one annotation
for each instance. For fairness, we only compared results of
mechanical seg-level labels generated from the largest N seg-
ments for every instance. Following the settings in Table VIII,
we also employed PointGroup [20] and KPConv [14] to train
a point cloud instance segmentation model and a point cloud
semantic segmentation model. Both instance and semantic
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Fig. 7. Point cloud instance segmentation results (%) of PointGroup network
trained with pseudo labels from different layers of SegGroup on the ScanNet
validation set. Layer names in X-axis are the same as the layer names in
Table II.

segmentation results show that the performance can be further
boosted to be closer to the fully supervised baseline by the
addition of annotation numbers per instance. When annotating
ten segments per instance, we can even reach the same
semantic segmentation performance with the fully supervised
baseline. In Figure 6, we also compare the AP 50 results of
our SegGroup in Table IX with the AP 50 results of CSC [25]
on instance segmentation. Experimental results validate the
effectiveness of our method on the overlapping portion of the
point annotation rate.

We also compared the point cloud instance segmentation
performance using the generated pseudo labels from differ-
ent layers of SegGroup. Fig. 7 shows the results of Point-
Group [20] network trained with pseudo labels from different
layers of SegGroup network on the ScanNet validation set.
Layer names in Fig. 7 are the same as the layer names
in Table II. As the number of labeled segments increases
during pseudo label generation in Table II, the segmentation
performance in Fig. 7 becomes better.

V. CONCLUSION

In this paper, we have exploited the importance of instance
locations for 3D scene segmentation and designed a weakly-
supervised point cloud segmentation task for full exploitation.
More specifically, we click on one point per instance to
indicate its location and extend these location annotations into
segments as seg-level labels by over-segmentation. We further
design a segment grouping network (SegGroup) to generate
point-level pseudo labels by grouping seg-level annotated
segments into instances hierarchically, so that existing strong-
supervised methods can directly consume the pseudo labels
for training. Experimental results on both instance and seman-
tic segmentation show that SegGroup effectively generates
high-quality point-level pseudo labels from the locations of
instances given the seg-level labels, which well balances the
annotation cost and segmentation accuracy.
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